A podcast project to fill the space in my heart and my time that used to be filled with academic research. In 2018, that space gets filled with... MORE SPACE! Cheerfully researched, painstakingly edited, informal as hell, definitely worth everyone's time.
243 posts
I talked about Proxima Centauri last week but didn't realize it has a planet!
It’s starry scholastic month! Planet X will start it off with his first lesson: Proxima B!
http://www.space.com/33845-why-proxima-b-exoplanet-hard-to-find.html
I’m a Northern Hemisphere dweller, so I thought it would be fun to cover Southern Hemisphere stars and constellations in this episode! I also coulsnt’ resist talking about Aurora Australis and Steve, the hot new atmospheric phenomenon all the young people are talking about.
Below the cut, I have the glossary, transcript, sources, and music credits. I take topic suggestions from Tumblr messages, or you can tweet at me on Twitter at @HDandtheVoid, or you can ask me to my face if you know me. Please subscribe on iTunes, rate my podcast and maybe review it, and tell friends if you think they’d like to hear it!
(My thoughts on the next episode are Chuck Yeager, Stephen Hawking and his theories, the opposition of Mars, or famous comets. The next episode will go up May 14th or 21st!)
Bayer designation - a way to classify stars based on their relative brightness within a constellation. A specific star is identified by a Greek letter, followed by the genitive form of the constellation's Latin name.
circumpolar - appearing to orbit one of the Earth’s poles. For stars and constellations, this means they are above the horizon at all times in certain latitudes.
irregular galaxy - an asymmetrical galaxy shape, where the galaxy lacks a central supermassive black hole.
Orion from the Southern Hemisphere via EarthSky (Mar 2017)
How to Spot Sky Landmarks: Big Dipper and Southern Cross via Space.com (Apr 2012)
Locate Cassiopeia the Queen via EarthSky (February 2018)
Small Magellanic Cloud orbits Milky Way via EarthSky (Oct 2017)
Nubecula via LatDict
Early star catalogues of the southern sky via Astronomy and Astrophysics (2011)
Catalog of Southern Stars via the University of Oklahoma
Edmond Halley via Royal Museums Greenwich
Finding south using the Southern Cross via Museum of Applied Arts and Sciences (Jan 2013)
List of 88 official constellations via the Astronomical Society of Southern Africa
Alpha Centauri system, closest to sun via EarthSky (May 2017)
Hadar is a southern pointer star via EarthSky (April 2017)
Aurora Australis forecast service
Video of aurora australis via Global News Canada (April 2018)
Aurora Steve via Global News Canada (March 2018)
Bagnall, Philip M. “Crux.” In The Star Atlas Companion: What You Need to Know About the Constellations. Springer Science+Business Media: New York, 2012 (183-7). Located in Google Books Preview [accessed May 1, 2018].
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘Mace Spray’ by The Jezabels off their EP Dark Storm.
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
It’s international dark sky week! Please enjoy this great Bortle scale.
skyglowproject What sky do you live under? Learn more at SKYGLOWPROJECT.COM
Did you know that some observatories are not on the ground and not orbiting Earth, but are mounted on airplanes? I finally researched SOFIA, an infrared observatory in a repurposed plane, and discovered there’s a rich history of airborne astronomy. And by airborne astronomy, I mean a lot of people took pictures of astronomical phenomena from planes!
Below the cut, I have the glossary, transcript, sources, and music credits. If you have suggestions for topics I could cover, please send me a Tumblr message or tweet at me on Twitter at @HDandtheVoid, or you can ask me to my face if you know me. Please subscribe on iTunes, rate my podcast and maybe review it, and tell friends if you think they’d like to hear it!
(My thoughts on the next episode are Chuck Yeager, Stephen Hawking and his theories, the opposition of Mars, famous comets, recent developments and discoveries in the astronomer community, or an atmospheric phenomenon called ‘Steve.’ The next episode will go up April 30th, lord willing and the creek don’t rise!)
absorption bands - the areas of the electromagnetic spectrum that are absorbed by atmospheric gases.
atmospheric windows - the areas of the electromagnetic spectrum where the atmosphere is transparent, or does not absorb the radiation of specific wavelengths.
corona - the hot outer atmosphere of the Sun.
electromagnetic spectrum - the range of wavelengths or frequencies over which electromagnetic radiation extends. A photon transmits electromagnetic radiation at different frequencies, which are in a range that includes (from highest frequency to lowest) gamma rays, X-rays, ultraviolet light, visible light, infrared, microwaves, and radio waves
frequency - the number of times a wave oscillates up and down per second.
hypoxia - insufficient oxygen in the blood. Symptoms include vertigo, nausea, weakness, hyperventilation, slowed thinking, poor coordination, dimmed vision, and increased heart rate.
photon - a type of elementary particle that moves in a wave. It transmits electromagnetic radition such as light. The more energy a photon has, the higher its frequency.
A map of every active satellite orbiting Earth via Quartz
Infrared radiation via Gemini Observatory (Feb 1999)
Absorption Bands and Atmospheric Windows via NASA
Gladys Ingle of the 13 BLACK CATS changes planes in mid-air via YouTube
Milestones in Airborne Astronomy: From the 1920's to the Present by Wendy Whiting Dolci (1997)
Limits to human performance: elevated risks on high mountains, by Huey, Raymond B. and Xavier Eguskitza. Journal of Experimental Biology (2001)
When Humans Fly High by Linda Pendleton (Nov 1999)
Dalton's Law tells us that the total pressure of any mixture of gases (with constant temperature and volume) is the sum of the individual pressures (also called partial pressure) of each gas in the mixture. Also, partial pressure of each gas is proportional to that gas's percentage of the total mixture. Because the percentage of oxygen in the atmosphere remains constant at 21%, Dalton's Law lets us calculate the partial pressure of the oxygen in the atmosphere at any altitude. As we'll see shortly, the human body is affected by the pressure of the gases in the atmosphere. The partial pressure of oxygen (and to a lesser extent other gases) available in the surrounding air is important in determining the onset and severity of hypoxia.
Henry's Law states that the amount of gas dissolved in a solution is proportional to the partial pressure of the gas over the solution. A bottle of carbonated liquid demonstrates Henry's Law. When the bottle is uncapped, the carbon dioxide (CO2) in the mixture will slowly diffuse to the atmosphere until the pressure of CO2 in the liquid equals the pressure of CO2 in the surrounding air. The soda will then be "flat." A bottle of soda opened in an unpressurized aircraft at 10,000 feet will foam and overflow. The opposite will happen with soda opened at pressures greater than one atmosphere. A champagne cork won't pop in a diving bathysphere pressurized for deep ocean exploration.
Boyle's Law states that the volume of a gas is inversely proportional to the pressure on the gas as long as the temperature remains constant. A gas will expand when the pressure on it is decreased. This law holds true for all gases, even those trapped in body cavities. A volume of gas at sea level pressure will expand to approximately twice its original volume at 18,000 feet, nearly nine times its original volume at 50,000 feet.
Graham's Law tells us that a gas at higher pressure exerts a force toward a region of lower pressure. There's a permeable or semi-permeable membrane separating the gases, and gas will diffuse across the membrane from the higher pressure to the lower pressure. This will continue until the pressure of the gas is equal, or nearly equal, on both sides of the membrane. Graham's Law is true for all gases and each gas in a mixture behaves independently. It's possible to have two or more gases in a solution diffusing in opposite directions across the same membrane and, in fact, this is what happens to make oxygen transfer possible in the cells and tissues of the human body.
High-Altitude Hypoxia via Harvard (July 2012)
Kuiper Airborne Observatory via NASA (May 2005)
NASA's Kuiper Airborne Observatory via YouTube
SOFIA Science Center
Up all Night with SOFIA, NASA's Flying Observatory via YouTube
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘A Bite Out of My Bed’ by The New Pornographers off their album Together.
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
How does a microgravity garden grow when there’s no up or down? An advanced chamber, about the size of a mini-fridge, is giving us a clearer perspective of plant growth habits. Without gravity and the addition of a wide variety of light and humidity settings, the plants cultivated on the International Space Station provide a world of opportunity to study space-based agricultural cycles.
Learn more about our space garden HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A flash of lightning. A roll of thunder. These are normal stormy sights and sounds. But sometimes, up above the clouds, stranger things happen. Our Fermi Gamma-ray Space Telescope has spotted bursts of gamma rays - some of the highest-energy forms of light in the universe - coming from thunderstorms. Gamma rays are usually found coming from objects with crazy extreme physics like neutron stars and black holes.
So why is Fermi seeing them come from thunderstorms?
Thunderstorms form when warm, damp air near the ground starts to rise and encounters colder air. As the warm air rises, moisture condenses into water droplets. The upward-moving water droplets bump into downward-moving ice crystals, stripping off electrons and creating a static charge in the cloud.
The top of the storm becomes positively charged, and the bottom becomes negatively charged, like two ends of a battery. Eventually the opposite charges build enough to overcome the insulating properties of the surrounding air - and zap! You get lightning.
Scientists suspect that lightning reconfigures the cloud’s electrical field. In some cases this allows electrons to rush toward the upper part of the storm at nearly the speed of light. That makes thunderstorms the most powerful natural particle accelerators on Earth!
When those electrons run into air molecules, they emit a terrestrial gamma-ray flash, which means that thunderstorms are creating some of the highest energy forms of light in the universe. But that’s not all - thunderstorms can also produce antimatter! Yep, you read that correctly! Sometimes, a gamma ray will run into an atom and produce an electron and a positron, which is an electron’s antimatter opposite!
The Fermi Gamma-ray Space Telescope can spot terrestrial gamma-ray flashes within 500 miles of the location directly below the spacecraft. It does this using an instrument called the Gamma-ray Burst Monitor which is primarily used to watch for spectacular flashes of gamma rays coming from the universe.
There are an estimated 1,800 thunderstorms occurring on Earth at any given moment. Over the 10 years that Fermi has been in space, it has spotted about 5,000 terrestrial gamma-ray flashes. But scientists estimate that there are 1,000 of these flashes every day - we’re just seeing the ones that are within 500 miles of Fermi’s regular orbits, which don’t cover the U.S. or Europe.
The map above shows all the flashes Fermi has seen since 2008. (Notice there’s a blob missing over the lower part of South America. That’s the South Atlantic Anomaly, a portion of the sky where radiation affects spacecraft and causes data glitches.)
Fermi has also spotted terrestrial gamma-ray flashes coming from individual tropical weather systems. The most productive system we’ve seen was Tropical Storm Julio in 2014, which later became a hurricane. It produced four flashes in just 100 minutes!
Learn more about what Fermi’s discovered about gamma rays over the last 10 years and how we’re celebrating its accomplishments.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
When I was in Ireland in 2013, I kept seeing signs for ‘quasar.’ I finally learned that it’s the European way of saying laser tag. It has nothing to do with quasars, which are a specific type of a specific type of galaxy. Listen to this week’s (pretty short) podcast on two types of active galaxies: quasars and blazars.
Below the cut, I have the transcript, sources, music credits, and timeline of people I talked about! If you have suggestions for topics I could cover, please send me a Tumblr message or tweet at me on Twitter at @HDandtheVoid, or you can ask me to my face if you know me. Please subscribe on iTunes, rate my podcast and maybe review it, and tell friends if you think they’d like to hear it!
(My thoughts on the next episode are the SOFIA observatory, Chuck Yaeger, or the great Stephen Hawking. The next episode will go up April 2nd.)
active galaxy or active galactic nucleus- a galaxy with a small core of emission embedded at the center. This core is typically very variable and very bright compared to the rest of the galaxy. These galaxies emit much more energy than they should; this excess energy is found in the infrared, radio, UV, and X-ray regions of the electromagnetic spectrum.
blazar - a subcategory of active galaxy, it is an extremely bright, distant object, powered by a black hole, which emits massive amounts of energy. It is distinct from a quasar because it is even brighter.
extragalactic objects - objects outside our Milky Way galaxy.
interferometry - a group of techniques to extract information from superimposing electromagnetic waves to create interference. In radio astronomy, this is done by using a wide spread of receivers to look at the same distant object, then bringing that data together with a correlator that can create a larger, clearer picture than an individual radio telescope alone could.
lunar occultations - when stars pass behind the Moon. This is the basis for a method of determining and mapping star positions.
quasar - a subcategory of active galaxy, it is an extremely bright, distant object, powered by a black hole, which emits massive amounts of energy. It is distinct from a blazar because it is less-bright. The name is a contraction of “quasi-stellar radio source” (which is not necessarily true of all quasars—90% are radio-quiet).
torus - a donut shape.
Walter Baade, German (1893-1960)
Rudolph Minkowski, German-American (1895-1976)
Fritz Zwicky, Swiss (1898-1974)
Gordon Stanley, New Zealander (1921-2001)
John Bolton, English-Australian (1922-1993)
Owen Bruce Slee, Australian (1924-2016)
Allan Rex Sandage, American (1926-2010)
Cyril Hazard, English (1928- )
Maartin Schmidt, Dutch (1929- )
Hong-Yee Chiu, American (1932- )
Stephen Hawking, English (1942 -2018)
Jedidah Isler
Active Galaxies via NASA (Dec 2016)
Galaxy shapes via Cornell University (April 2000)
Galaxies and Black Holes by David Merritt, published on NED by Caltech and NASA
Cyril Hazard via University of Pittsburgh
The Discovery of Quasars and its Aftermath via Journal of Astronomical History and Heritage (2014)
“Characteristically, Fritz Zwicky (1898–1974; Figure 11) immediately pointed out that ‘All of the five quasi-stellar galaxies described individually by Sandage (1965) evidently belong to the subclass of compact galaxies with pure emission spectra previously discovered and described by the present writer. (Zwicky, 1965: 1293).’ A few years later, Zwicky was less circumspect and wrote: ‘In spite of all these facts being known to him in 1964, Sandage attempted one of the most astounding feats of plagiarism by announcing the existence of a major new component of the Universe: the quasi-stellar galaxies ... Sandage‘s earthshaking discovery consisted in nothing more than renaming compact galaxies, calling them ‘interlopers‘ and quasistellar galaxies, thus playing the interloper himself. (Zwicky and Zwicky, 1971: xix)’”
Lunar occultations via Sky and Telescope
Quasars and Blazars by Matthew Whiting (a chapter in his thesis, What made the quasar blush? Emission mechanisms in optically-red quasars) via the Australia Telescope National Facility (2000)
Jedidah Isler on quasars and blazars via TED Talks (March 2015)
Quasar definition via Space.com (Feb 2018)
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘Into The White’ by Pixies off their album Wave of Mutilation.
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
Did you know the government of New Mexico still considers Pluto to be a planet? In fact March 13th is “Pluto Planet Day”! So mark your calendars, it’s coming up.
February is Black History Month, and it’s been the perfect excuse to research all of the African-American people who have contributed to space research and exploration! I talk about seven astronomers and nine astronauts who have delved into outer space because it was just so dang amazing, nothing could stop them from learning about it; astrophiles, if you will. Space-lovers.
Below the cut, I have the transcript, sources, music credits, and timeline of people I talked about! Maybe you have something you want to hear me talk about that’s related to space. I’m kind of set for topics for the next few months but I’ll take suggestions here or you can tweet at me on Twitter at @HDandtheVoid, or you can ask me to my face if you know me. Please subscribe on iTunes, rate my humble podcast and maybe review it, and tell friends if you think they’d like to hear it!
(My thoughts on the next episode are the SOFIA observatory, Chuck Yaeger, the transit of Venus, or quasars and blasars. The next episode will go up March 19th, unfortunately; I have a work retreat the day I’d usually post and I don’t trust the wifi out there. See you then!)
Benjamin Banneker, American (1731-1806)
Dorothy Vaughan, American (1910-2008)
Katherine Johnson, American (1918- )
Mary Jackson, American (1921-2005)
Ed Dwight, American (1933- )
Robert Henry Lawrence, American (1935-1967)
Doctor Arthur Bertram Cuthbert Walker II, American (1936-2001)
Frederick Gregory, American (1941- )
Guion "Guy" Bluford, American (1942- )
Doctor Ronald E. McNair, American (1950-1986)
Ilan Ramon, Israeli, American (1954-2003)
Doctor Bernard Harris, Jr., American (1956- )
Doctor Mae Jemison, American (1956- )
Neil DeGrasse Tyson, American (1958- )
Michael P. Anderson, American (1959-2003)
Leland Melvin, American (1964- )
Doctor Beth A. Brown, American (1969-2008)
African Americans in Astronomy and Space via ThoughtCo (Mar 2017)
Benjamin Banneker via Encyclopedia Britannica
Benjamin Banneker via PBS
Benjamin Banneker via America’s Library
Benjamin Banneker via Brookhaven National Laboratory
Hidden Figures (2016)
Katherine Johnson via NASA
Mary Jackson via NASA
Dorothy Vaughan via NASA
Doctor Arthur Bertram Cuthbert Walker II via Encyclopedia Britannica
Doctor Arthur Bertram Cuthbert Walker II obituary via the American Astronomical Society
Ed Dwight via The History Makers
Robert Henry Lawrence via Black Past
Robert Henry Lawrence via PBS
Robert Henry Lawrence via Hill Air Force Base
Guion "Guy" Bluford via Space.com (Feb 2017)
Guion Bluford: “I mean, I laughed and giggled all the way up. It was such a fun ride.”
Guion "Guy" Bluford via NASA
Guion "Guy" Bluford via Encyclopedia Britannica
Doctor Ronald E. McNair via NASA
Doctor Ronald E. McNair via Black Past
Doctor Ronald E. McNair via New Jersey Institute of Technology
Frederick “Fred” Gregory via NASA
Frederick “Fred” Gregory via Black Past
The Harris Foundation website
“empower individuals, in particular minorities and others who are economically and/or socially disadvantaged, to recognize their potential and pursue their dreams.”
Doctor Mae Jemison via NASA
Doctor Mae Jemison via NASA
Doctor Mae Jemison via the U.S. National Library of Medicine
Mae Jemison: “I followed the Gemini, the Mercury, and the Apollo programs, I had books about them and I always assumed I would go into space. Not necessarily as an astronaut; I thought because we were on the moon when I was 11 or 12 years old, that we would be going to Mars—I'd be going to work on Mars as a scientist. And that's despite the fact that there were no women, and it was all white males—and in fact, I thought that was one of the dumbest things in the world, because I used to always worry, believe it or not as a little girl, I was like: What would aliens think of humans? You know, these are the only humans?”
Michael P. Anderson via NASA
Michael P. Anderson via Black Past
Ilan Ramon via NASA
Leland Melvin via Space.com (Nov 2017)
Leland Melvin as Makers Men via Space.com (May 2017)
Leland Melvin via NASA
Leland Melvin via Pioneer Works
Doctor Beth A. Brown via the American Physical Society
Doctor Beth A. Brown via the American Astronomical Society
Doctor Beth A. Brown via NASA
Neil DeGrasse Tyson via Hayden Planetarium
Neil DeGrasse Tyson via the New Yorker
StarTalk Radio via Apple Podcasts
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘Dorothy Dandridge Eyes (feat. Esperanza Spalding)’ by Janelle Monáe off her album The Electric Lady.
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
I’ve gotten some feedback that episodes can be too technical. Unfortunately, that feedback came too late to save you from this week’s episode, which requires me to summarize the electromagnetic spectrum, radio astronomy, a concept called interferometry, and government regulations to talk about the topic that originally started me on this path: radio quiet zones. Please, bear with me! Pardon my mess! It was all very interesting stuff, I couldn’t resist digging into it.
Below the cut are my sources, music credits, a vocab list, a timeline of the astronomers I mention, and the transcript of this episode. I’ve bolded those sources I mention in the podcast, including the podcast that started me on this topic: The Adventure Zone! Please let me know what you think I should research next by messaging me here, tweeting at me at @HDandtheVoid, or asking me to my face if you know me. I’d love it if you would subscribe on iTunes, rate my humble little podcast and maybe review it, and tell friends if you think they’d like to hear it!
(My thoughts on the next episode are SOFIA, which you need to listen to find out what it stands for, or the pilot Chuck Yaeger. The next episode will go up February 26th.)
aperture synthesis - the process of collecting electromagnetic radiation from a variety of separate, small telescopes and then combining this data to recreate the image at a higher resolution than would be possible with a single telescope.
frequency - the number of times a wave oscillates up and down per second.
hertz - the number of times an electromagnetic wave cycles per second. One cycle per second is 1 hertz.
interferometry - a group of techniques to extract information from superimposing electromagnetic waves to create interference. In radio astronomy, this is done by using a wide spread of receivers to look at the same distant object, then bringing that data together with a correlator that can create a larger, clearer picture than an individual radio telescope alone could.
radiation - energy that travels and spreads out as it goes.
Joseph-Louis Lagrange, French (1736-1813)
Armand-Hippolyte-Louis Fizeau, French (1819-1896)
Edward W. Morley, American (1838-1923)
Albert A. Michelson, American (1852-1931)
Sir Martin Ryle, British (1918-1984)
Bernard Yarnton Mills, Australian (1920-2011)
Derek Vonberg, British (1922-2015)
Antony Hewish, British (1924- )
Electromagnetic spectrum via NASA
Observatories across the EM spectrum via NASA
Fermi satellite via NASA
The Neil Gehrels Swift Observatory via NASA
NuSTAR via Caltech
NuSTAR via NASA
Chandra X-Ray Observatory via Harvard
The Galaxy Evolution Explorer (GALEX) via Caltech
Kepler satellite via NASA
Hubble Space Telescope via NASA
Spitzer satellite via Caltech
Stratospheric Observatory for Infrared Astronomy (SOFIA)
Planck satellite via ESA
Spekt-R Radioastron from Russia
High Energy Stereoscopic System (HESS)
W. M. Keck Observatory on Mauna Kea
South Africa Large Telescope (SALT) in Namibia
The Combined Array for Research in Millimeter-Wave Astronomy (CARMA) via Caltech
CARMA public page (decommissioned)
Very Large Array (VLA) via NRAO
Space radio telescope (1997) via NRAO
Highly Advanced Laboratory for Communications and Astronomy (HALCA) via NASA
A timeline of the history of radio interferometry via University of Groningen (Netherlands)
Interferometers via the LIGO Laboratory
Michelson-Morley Experiment via University of Virginia
Astronomical Interferometry via Magdalena Ridge Observatory
Interferometry via XKCD
How Radio Works via How Stuff Works
Radio Spectrum Allocation via the Federal Communications Commission
Interferometry via the European Space Observatory
National Radio Quiet Zone via National Radio Astronomy Observatory
“minimize possible harmful interference to the National Radio Astronomy Observatory (NRAO) in Green Bank, WV and the radio receiving facilities for the United States Navy in Sugar Grove, WV.”
National Radio Quiet Zone via CNN
“Tucked in the Allegheny Mountains, researchers are listening to exploding galaxies at the edge of the universe – a signal that is so faint, it’s about a billionth of a billionth of a millionth of a watt.”
The Quiet Zone: Where mobile phones are banned via BBC News (May 2015)
Enter The Quiet Zone: Where Cell Service, Wi-Fi Are Banned via NPR (Oct 2013)
Green Bank Observatory in West Virginia, USA
Karen O’Neil: “The types of energies we look at are less than the energy of a single snowflake falling on the Earth.”
Characteristics of radio quiet zones via International Telecommunication Union (Sept 2012)
“transmissions below 15 GHz are restricted within a certain radius around the Arecibo Observatory, located in Puerto Rico. Since no observations are carried out, nor are any expected to be carried out above that frequency in the future, no restrictions are needed on higher frequency transmissions. The reverse is not necessarily true, however. For example, some restrictions may be imposed on transmissions below 30 GHz in the neighbourhood of the large international ALMA observatory even though it is not expected to ever observe below that frequency, due to its susceptibility to interference at these lower frequencies in the signal path.”
“It is important to emphasize that a RQZ does not imply a complete absence of radio transmissions. The existence of, and coexistence with, a range of man-made devices will always be necessary. A RQZ may include options for notification of other users and for negotiation in mitigating interference. On the other hand, a RQZ does not consist entirely of mitigating techniques implemented by the radio astronomy facility; some level of control on externally-generated interference is intrinsic to a RQZ.
A RQZ is therefore a buffer zone that allows for the implementation of mechanisms to protect radio astronomy observations at a facility within the zone from detrimental radio frequency interference, through effective mitigation strategies and regulation of radio frequency transmitters.”
ALMA Observatory website
The Scientific Committee on Frequency Allocations for Radio Astronomy (IUCAF) website
Google Map of worldwide radio quiet zones (Aug 2016)
ITU-R Recommendations of Particular Importance to Radio Astronomy by A. Richard Thompson
“the necessity of maintaining the shielded zone of the Moon as an area of great potential for observations by the radio astronomy service and by passive space research, and consequently of maintaining it as free as possible from transmissions.”
The Adventure Zone: Amnesty setup episode via Maximum Fun
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘Junkyard Chandelier’ by Radical Face aka Ben Cooper, who primarily releases music as Radical Face but also has at least three other bands or band names he’s working with/has released music as.
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
Gotta wake up pretty early in the morning to see the blue blood moon!
Heads up, this is tomorrow night! I hope it's clear where I am to see it but considering I'm in the Pacific Northwest, I don't have super high hopes. Get a look if you can, though! Rare to see a blue moon that's actually red :)
If you were captivated by August’s total solar eclipse, there’s another sky show to look forward to on Jan. 31: a total lunar eclipse!
Below are 10 things to know about this astronomical event, including where to see it, why it turns the Moon into a deep red color and more…
1. First things first. What’s the difference between solar and lunar eclipses? We’ve got the quick and easy explanation in this video:
2. Location, location, location. What you see will depend on where you are. The total lunar eclipse will favor the western U.S., Alaska, Hawaii, and British Columbia on Jan. 31. Australia and the Pacific Ocean are also well placed to see a major portion of the eclipse, if not all of it.
3. Color play. So, why does the Moon turn red during a lunar eclipse? Here’s your answer:
4. Scientists, stand by. What science can be done during a lunar eclipse? Find out HERE.
5. Show and tell. What would Earth look like from the Moon during a lunar eclipse? See for yourself with this artist’s concept HERE.
6. Ask me anything. Mark your calendars to learn more about the Moon during our our Reddit AMA happening Monday, Jan. 29, from 3-4 pm EST/12-1 pm PST.
7. Social cues. Make sure to follow @NASAMoon and @LRO_NASA for all of the latest Moon news leading up to the eclipse and beyond.
8. Watch year-round. Can’t get enough of observing the Moon? Make a DIY Moon Phases Calendar and Calculator that will keep all of the dates and times for the year’s moon phases right at your fingertips HERE.
Then, jot down notes and record your own illustrations of the Moon with a Moon observation journal, available to download and print from moon.nasa.gov.
9. Lesson learned. For educators, pique your students’ curiosities about the lunar eclipse with this Teachable Moment HERE.
10. Coming attraction. There will be one more lunar eclipse this year on July 27, 2018. But you might need your passport—it will only be visible from central Africa and central Asia. The next lunar eclipse that can be seen all over the U.S. will be on Jan. 21, 2019. It won’t be a blue moon, but it will be a supermoon.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
People can’t anticipate how much they’ll miss the natural world until they are deprived of it. I have read about submarine crewmen who haunt the sonar room, listening to whale songs and colonies of snapping shrimp. Submarine captains dispense “periscope liberty” - a chance to gaze at clouds and birds and coastlines - and remind themselves that the natural world still exists. I once met a man who told me that after landing in Christchurch, New Zealand, after a winter at the South Pole research station, he and his companions spent a couple of days just wandering around staring in awe at flowers and trees. At one point, one of them spotted a woman pushing a stroller. “A baby!” he shouted, and they all rushed across the street to see. The woman turned the stroller and ran. Nothing tops space as a barren, unnatural environment. Astronauts who had no prior interest in gardening spend hours tending experimental greenhouses. “They are our love,” said cosmonaut Vladislav Volkov of the tiny flax plants - with which they shared the confines of Salyut 1, the first Soviet space station. At least in orbit, you can look out the window and see the natural world below. On a Mars mission, once astronauts lose sight of Earth, they’ll be nothing to see outside the window. “You’ll be bathed in permanent sunlight, so you won’t eve see any stars,” astronaut Andy Thomas explained to me. “All you’ll see is black.”
Mary Roach. Packing for Mars: The Curious Science of Life in the Void (via coneyislands)
I had to skip last week to finish an article on STEM but it got me a really awesome intro to a very serious episode. Learn this week about 1) Sally Ride (a bit, just like the highlight reel on her) 2) NASA’s space shuttle program 3) the Challenger disaster that occurred January 28, 1986. It was the anniversary of this tragedy yesterday and I wanted to learn more about it and why it happened and what, ultimately, came out of that difficult time in the space shuttle program.
I have a quick and easy way for you to cut out listening to the actual recap of the disaster if you don’t want to hear about it and just want to hear the fun space shuttle facts and the changes that NASA undertook in learning from Challenger’s destruction. Below the cut are my sources, music credits, a vocab list, and the transcript of this episode. I’ve bolded those sources I mention in the podcast, and I do have a trigger warning for the actual, live-coverage footage of the Challenger disaster. Please let me know what you think I should research next by messaging me here, tweeting at me at @HDandtheVoid, or asking me to my face if you know me. I’d love it if you would subscribe on iTunes (especially since I seem to have so many problems this month with consistent timing), rate my humble little podcast and maybe review it, and tell friends if you think they’d like to hear it!
(My thoughts on the next episode are national radio quiet zones, or I could go into the transit of Venus. The next episode will go up February 12th.)
gimbaled - moveable. In a gimbaled thrust system for rockets, the exhaust nozzel of the rocket can be swiveled from side to side, which changes the direction of that thrust relative to rocket’s center of gravity.
pitch - in flight, this is rotation around the side-to-side axis. If the object’s nose points upwards or downwards, this is changing its pitch.
roll - in flight, this is rotation around the front-to-back axis. If the object’s wings spin from horizontal to vertical, it’s rolling.
yaw - in flight, this is rotation around the vertical axis. If the pilot turns the object so they can see more to the left or to the right, with no change in the horizon’s position, this is changing its yaw.
Sally Ride (for K-4) via NASA
Sally Ride bio via NASA
Sally Ride via the Smithsonian National Air and Space Museum
Sally Ride and her sexuality via Slates blog ‘Outward’ (May 2014)
Sexual Orientation Discrimination Policy via NASA
“Employees should expect to find a diversity of sexual orientations at NASA. In the past, it was common practice to fire or to refuse to hire suspected homosexuals in the Federal workplace. Employees have been physically threatened, verbally abused, and subjected to hostile working conditions. Laws and policies have changed, and all NASA employees need to be aware of their responsibility to prevent this form of discrimination and to ensure that lesbian, gay, bisexual, and transgender (LGBT) individuals are an accepted and valued part of the diverse NASA workforce.”
Space shuttle era via NASA
1983-1986: The Missions and History of Space Shuttle Challenger via NASA Spaceflight
Space shuttle process via NASA (archived)
Space shuttle components via NASA
Gimbaled thrust via NASA
Roll, Pitch, and Yaw via the Smithsonian National Air and Space Museum
Typical shuttle mission via NASA
Challenger via Space.com (Nov 2017)
Challenger disaster via History.com — contains an autoplay video
Challenger disaster live on CNN via YouTube (Jan 2011)—tw: destruction occurs at timecode 1:35
Challenger myths debunked via National Geographic (Jan 2016)
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘Repent’ by Dreamend off their album And So I Ate Myself, Bite By Bite, which has cover art that scared the hell out of me when my friend gave it to me because I was on painkillers for a shattered radial head. Really good band, though.
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
Here’s a great example of the kinds of experiments astronauts perform on the International Space Station, just like I talked about in Episode 19! I absolutely want to high-five whoever called is ISS-CREAM.
A new experiment that will collect tiny charged particles known as galactic cosmic rays will soon be added to the International Space Station. The Cosmic Ray Energetics And Mass for the International Space Station payload, nicknamed ISS-CREAM, will soon be installed in its new home on the Station’s Japanese Experiment Module Exposed Facility. ISS-CREAM will help scientists understand more about galactic cosmic rays and the processes that produce them.
Cosmic rays are pieces of atoms that move through space at nearly the speed of light. Galactic cosmic rays come from beyond our solar system.
They provide us with direct samples of matter from distant places in our galaxy.
Galactic cosmic rays have been sped up by extreme processes. When massive stars die, they explode as supernovas. The explosion’s blast wave expands into space along with a cloud of debris.
Particles caught up in this blast wave can bounce around in it and slowly pick up speed. Eventually they move so fast they can escape the blast wave and race away as a cosmic ray.
Cosmic rays are constantly zipping through space at these super-fast speeds, running into whatever is in their path – including Earth.
But Earth’s atmosphere is a great shield, protecting us from 99.9 percent of the radiation coming from space, including most cosmic rays. This is good news for life on Earth, but bad news for scientists studying cosmic rays.
Because Earth has such an effective shield against cosmic rays, the best place for scientists to study them is above our atmosphere – in space. Since the 1920s, scientists have tried to get their instruments as close to space as possible. One of the simplest ways to do this is to send these instruments up on balloons the size of football stadiums. These balloons are so large because they have to be able to both lift their own weight and that of their cargo, which can be heavier than a car. Scientific balloons fly to 120,000 feet or more above the ground – that’s at least three times higher than you might fly in a commercial airplane!
Credit: Isaac Mognet (Pennsylvania State University)
Earlier versions of ISS-CREAM’s instruments were launched on these giant balloons from McMurdo Station in Antarctica seven times, starting in 2004, for a total of 191 days near the top of the atmosphere. Each of these flights helped the team test their hardware and work towards sending a cutting-edge cosmic ray detector into space!
Balloon flights allowed the team to collect a lot of cosmic rays, but even at 120,000 feet, a lot of the particles are still blocked. Scientists at the University of Maryland, College Park, who operate ISS-CREAM, expect to get about 10 times as much data from their new home on the International Space Station.
That’s because it will be both above the atmosphere and fly far longer than is possible with a balloon. As you might imagine, there are large differences between flying something on a balloon and launching it into space. The science instruments and other systems had to be changed so ISS-CREAM could safely launch on a rocket and work in space.
While on the space station, ISS-CREAM will collect millions of cosmic rays – electrons, protons and atomic nuclei representing the elements found in the solar system. These results will help us understand why cosmic rays reach the wicked-fast speeds they do and, most important, what limits those speeds.
ISS-CREAM launches to the International Space Station aboard the latest SpaceX Dragon spacecraft, targeted to launch August 14. Want to learn more about ISS-CREAM and some of our scientific balloons? Check out our recent feature, NASA’s Scientific Balloon Program Reaches New Heights.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
New Horizons Flyover of Pluto
Using actual New Horizons data and digital elevation models of Pluto and its largest moon Charon, mission scientists have created flyover movies that offer spectacular new perspectives of the many unusual features that were discovered and which have reshaped our views of the Pluto system – from a vantage point even closer than the spacecraft itself. This dramatic Pluto flyover begins over the highlands to the southwest of the great expanse of nitrogen ice plain informally named Sputnik Planitia. The viewer first passes over the western margin of Sputnik, where it borders the dark, cratered terrain of Cthulhu Macula, with the blocky mountain ranges located within the plains seen on the right. The tour moves north past the rugged and fractured highlands of Voyager Terra and then turns southward over Pioneer Terra – which exhibits deep and wide pits – before concluding over the bladed terrain of Tartarus Dorsa in the far east of the encounter hemisphere. Digital mapping and rendering were performed by Paul Schenk and John Blackwell of the Lunar and Planetary Institute in Houston.
This is Kjell Lindgren. He’s a NASA astronaut who just got back from 5 months on the International Space Station. There are two reasons why this picture is hilarious:
His wife is flawless and makes bad space puns to make him do household chores.
I have that shirt. Thousands of people have that shirt. That shirt is available at Target. Which means actual astronaut Kjell Lindgren, with his wardrobe already full of NASA-issued and logo-emblazoned clothes, was at Target, saw a NASA shirt, and was like, “Yes, I am buying this because this is what I want to spend my actual astronaut salary on.”
tl;dr NASA employs a bunch of fucking nerds
This is an article from last year, but still very exciting news! I wonder how far it’s progressed since?
The venerable Voyager 1 spacecraft. Still impressing after all these years.
I wish I’d found this before Episode 19, dang it! Such good gifs of astronauts, though.
On Earth, a double shot mocha latte with soymilk, low-fat whip and a caramel drizzle is just about as complicated as a cup of coffee gets. Aboard the International Space Station, however, even just a simple cup of black coffee presents obstacles for crew members.
Understanding how fluids behave in microgravity is crucial to bringing the joys of the coffee bean to the orbiting laboratory. Astronaut Don Pettit crafted a DIY space cup using a folded piece of overhead transparency film. Surface tension keeps the scalding liquid inside the cup, and the shape wicks the liquid up the sides of the device into the drinker’s mouth.
The Capillary Beverage investigation explored the process of drinking from specially designed containers that use fluid dynamics to mimic the effect of gravity. While fun, this study could provide information useful to engineers who design fuel tanks for commercial satellites!
The capillary beverage cup allows astronauts to drink much like they would on Earth. Rather than drinking from a shiny bag and straw, the cup allows the crew member to enjoy the aroma of the beverage they’re consuming.
On Earth, liquid is held in the cup by gravity. In microgravity, surface tension keeps the liquid stable in the container.
The ISSpresso machine brought the comforts of freshly-brewed coffees and teas to the space station. European astronaut Samantha Cristoforetti enjoyed the first cup of espresso brewed using the ISSpresso machine during Expedition 43.
Now, during Expedition 53, European astronaut Paolo Nespoli enjoys the same comforts.
Astronaut Kjell Lindgren celebrated National Coffee Day during Expedition 45 by brewing the first cup of hand brewed coffee in space.
We have a latte going on over on our Snapchat account, so give us a follow to stay up to date! Also be sure to follow @ISS_Research on Twitter for your daily dose of space station science.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The James Webb Space Telescope’s gold-plated, beryllium mirrors are beautiful feats of engineering. From the 18 hexagonal primary mirror segments, to the perfectly circular secondary mirror, and even the slightly trapezoidal tertiary mirror and the intricate fine-steering mirror, each reflector went through a rigorous refinement process before it was ready to mount on the telescope. This flawless formation process was critical for Webb, which will use the mirrors to peer far back in time to capture the light from the first stars and galaxies.
The James Webb Space Telescope, or Webb, is our upcoming infrared space observatory, which will launch in 2019. It will spy the first luminous objects that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born, and how life could form on other planets.
A polish and shine that would make your car jealous
All of the Webb telescope’s mirrors were polished to accuracies of approximately one millionth of an inch. The beryllium mirrors were polished at room temperature with slight imperfections, so as they change shape ever so slightly while cooling to their operating temperatures in space, they achieve their perfect shape for operations.
The Midas touch
Engineers used a process called vacuum vapor deposition to coat Webb’s mirrors with an ultra-thin layer of gold. Each mirror only required about 3 grams (about 0.11 ounces) of gold. It only took about a golf ball-sized amount of gold to paint the entire main mirror!
Before the deposition process began, engineers had to be absolutely sure the mirror surfaces were free from contaminants.
The engineers thoroughly wiped down each mirror, then checked it in low light conditions to ensure there was no residue on the surface.
Inside the vacuum deposition chamber, the tiny amount of gold is turned into a vapor and deposited to cover the entire surface of each mirror.
Primary, secondary, and tertiary mirrors, oh my!
Each of Webb’s primary mirror segments is hexagonally shaped. The entire 6.5-meter (21.3-foot) primary mirror is slightly curved (concave), so each approximately 1.3-meter (4.3-foot) piece has a slight curve to it.
Those curves repeat themselves among the segments, so there are only three different shapes — 6 of each type. In the image below, those different shapes are labeled as A, B, and C.
Webb’s perfectly circular secondary mirror captures light from the 18 primary mirror segments and relays those images to the telescope’s tertiary mirror.
The secondary mirror is convex, so the reflective surface bulges toward a light source. It looks much like a curved mirror that you see on the wall near the exit of a parking garage that lets motorists see around a corner.
Webb’s trapezoidal tertiary mirror captures light from the secondary mirror and relays it to the fine-steering mirror and science instruments. The tertiary mirror sits at the center of the telescope’s primary mirror. The tertiary mirror is the only fixed mirror in the system — all of the other mirrors align to it.
All of the mirrors working together will provide Webb with the most advanced infrared vision of any space observatory we’ve ever launched!
Who is the fairest of them all?
The beauty of Webb’s primary mirror was apparent as it rotated past a cleanroom observation window at our Goddard Space Flight Center in Greenbelt, Maryland. If you look closely in the reflection, you will see none other than James Webb Space Telescope senior project scientist and Nobel Laureate John Mather!
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our massive James Webb Space Telescope is currently being tested to make sure it can work perfectly at incredibly cold temperatures when it’s in deep space.
Webb is a giant infrared space telescope that we are currently building. It was designed to see things that other telescopes, even the amazing Hubble Space Telescope, can’t see.
Webb’s giant 6.5-meter diameter primary mirror is part of what gives it superior vision, and it’s coated in gold to optimize it for seeing infrared light.
Lots of stuff in space emits infrared light, so being able to observe it gives us another tool for understanding the universe. For example, sometimes dust obscures the light from objects we want to study – but if we can see the heat they are emitting, we can still “see” the objects to study them.
It’s like if you were to stick your arm inside a garbage bag. You might not be able to see your arm with your eyes – but if you had an infrared camera, it could see the heat of your arm right through the cooler plastic bag.
Credit: NASA/IPAC
With a powerful infrared space telescope, we can see stars and planets forming inside clouds of dust and gas.
We can also see the very first stars and galaxies that formed in the early universe. These objects are so far away that…well, we haven’t actually been able to see them yet. Also, their light has been shifted from visible light to infrared because the universe is expanding, and as the distances between the galaxies stretch, the light from them also stretches towards redder wavelengths.
We call this phenomena “redshift.” This means that for us, these objects can be quite dim at visible wavelengths, but bright at infrared ones. With a powerful enough infrared telescope, we can see these never-before-seen objects.
We can also study the atmospheres of planets orbiting other stars. Many of the elements and molecules we want to study in planetary atmospheres have characteristic signatures in the infrared.
Because infrared light comes from objects that are warm, in order to detect the super faint heat signals of things that are really, really far away, the telescope itself has to be very cold. How cold does the telescope have to be? Webb’s operating temperature is under 50K (or -370F/-223 C). As a comparison, water freezes at 273K (or 32 F/0 C).
Because there is no atmosphere in space, as long as you can keep something out of the Sun, it will get very cold. So Webb, as a whole, doesn’t need freezers or coolers - instead it has a giant sunshield that keeps it in the shade. (We do have one instrument on Webb that does have a cryocooler because it needs to operate at 7K.)
Also, we have to be careful that no nearby bright things can shine into the telescope – Webb is so sensitive to faint infrared light, that bright light could essentially blind it. The sunshield is able to protect the telescope from the light and heat of the Earth and Moon, as well as the Sun.
Out at what we call the Second Lagrange point, where the telescope will orbit the Sun in line with the Earth, the sunshield is able to always block the light from bright objects like the Earth, Sun and Moon.
By lots of testing on the ground before we launch it. Every piece of the telescope was designed to work at the cold temperatures it will operate at in space and was tested in simulated space conditions. The mirrors were tested at cryogenic temperatures after every phase of their manufacturing process.
The instruments went through multiple cryogenic tests at our Goddard Space Flight Center in Maryland.
Once the telescope (instruments and optics) was assembled, it even underwent a full end-to-end test in our Johnson Space Center’s giant cryogenic chamber, to ensure the whole system will work perfectly in space.
It will move to Northrop Grumman where it will be mated to the sunshield, as well as the spacecraft bus, which provides support functions like electrical power, attitude control, thermal control, communications, data handling and propulsion to the spacecraft.
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Here’s the nose scratching sponge I talked about in Episode 19!
This is how astronauts clear our ears (and scratch our noses!) during a spacewalk.
I love this comic a lot! You can read it all online to make sure you want to buy it, and then you should buy it because it’s extremely excellent. It’s about preservation in space and also love and found families! And it’s absolutely beautiful. I met Tillie while she was in my town signing her comic Spinning (also excellent) and she drew one of the fish spaceships for me and she was so kind even though I am terrible at smalltalk. Check her comic out!
OH MY! Here’s the cover for ON A SUNBEAM the graphic novel. Coming out this fall!!!!
I imagine most people wanted to be astronauts when they learned it was a job they could have - I certainly did! And then I thought about it and realized podcasting about outer space was much less scary and much more achievable than becoming an astronaut, with the bonus of not having to wonder how hard I’d panic in an enclosed-yet-surrounded-by-vastness space. There have been a lot of people braver than me who went to space, and some of them went to space on long-term missions lasting months or a year, living on the International Space Station (or the historical equivalent, depending on when in history this happened). Learn what resources are available to ISS astronauts, and what risks there are out there (apart from the obvious ones).
Sorry I missed last week, but it was New Year’s and I don’t feel very guilty. Get excited about more space podcasts in 2018, though! Below the cut are my sources, music credits, a vocab list, and the transcript of this episode. I bolded any videos or sources that I mentioned in the podcast, if you’re looking for those specifically. Go ahead and suggest what you think I should research next by messaging me here, tweeting at me at @HDandtheVoid, or asking me to my face if you know me. Please subscribe on iTunes, rate it and maybe review it, and tell friends if you think they’d like to hear it!
(My thoughts on the next episode are more about astronauts, or I could go into the transit of Venus. I have a couple books about space I should really get into reading… The next episode will go up January 22nd.)
free fall - the downward movement of an object that is due to the force of gravity alone.
gravity - the phenomenon which causes all things with mass to move towards each other. On the universal scale, this is caused by the warping of spacetime by objects with large mass, e.g. stars and planets, and is explained through Einstein’s theory of general relativity.
microgravity - the state of perpetual free fall in a gravity field.
orbit - the gravitationally curved trajectory of an object, e.g. the trajectory of a satellite around a planet.
Yuri Gagarin via NASA
Microgravity via NASA (Feb 2012)
The history of astronaut life via the Smithsonian Air and Space Museum
Menstruation in space via National Geographic (Apr 2016)
The Air We Breathe via the Smithsonian Environmental Research Center
Breathing Easy on the Space Station via NASA (Nov 2000)
Jay Perry: “the chemical-mechanical systems are much more compact, less labor intensive, and more reliable than a plant-based system.”
Astronaut’s Home Videos Show How to Cook in Space via Space.com (Mar 2013)
Astronaut Hygiene: How to Wash Your Hair In Space (Video) via Space.com (July 2013)
Interview with former astronaut Prof. Jeremy Hoffman via the University of Leicester
A day in the life aboard the International Space Station via NASA (2015)
Zvezda Module Overview via NASA
Food for Space Flight via Nasa (Feb 2004)
John Glenn via NASA (Feb 2012)
Crew From U.S., Russia and Japan Expands Space Population to Six via NASA (Dec 2017)
ISS blog with experiment updates via NASA
Astronaut daily life via ESA (Nov 2012)
The Skylab 4 Mutiny, 1973 via libcom.org (Apr 2004)
Carr: “On the ground, I don’t think we would be expected to work a 16-hour day for 85 days, and so I really don’t see why we should even try to do it up here.”
‘Space Oddity’ by Chris Hadfield via YouTube
Interview with astronaut Chris Hadfield via NPR (Oct 2013)
Col. Chris Hadfield: “The contrast of your body and your mind inside … essentially a one-person spaceship, which is your spacesuit, where you’re holding on for dear life to the shuttle or the station with one hand, and you are inexplicably in between what is just a pouring glory of the world roaring by, silently next to you — just the kaleidoscope of it, it takes up your whole mind. It’s like the most beautiful thing you’ve ever seen just screaming at you on the right side, and when you look left, it’s the whole bottomless black of the universe and it goes in all directions. It’s like a huge yawning endlessness on your left side and you’re in between those two things and trying to rationalize it to yourself and trying to get some work done.”
Excerpt from memoir by former astronaut Scott Kelly via the Sunday Morning Herald (Oct 2017)
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: ‘Major Tom’ by Shiny Toy Guns off their album Major Tom.
Background Music: ‘Leaves’ by Patients aka Ben Cooper, who primarily releases music as Radical Face but also has at least three other bands or band names he’s working with/has released music as.
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught
Binary star systems have come up a lot in the past 18 podcasts, and here is a perfect example of them!
As promised, here is a comic about the brightest star in the northern Hemisphere: Sirius! Sirius B will be shown in future comics as 2018 is year of the dog and since Sirius is the dog star, it is year of the Sirius!
Enjoy!
https://www.space.com/21702-sirius-brightest-star.html
No matter where you hang your stockings, I wish you a very Merry Christmas!
In November, a couple lovely people brought my attention to articles about a recent discovery that headlines consistently referred to as the ‘zombie star.’ What the heck is a zombie star? What makes it a zombie? I found a zombie star from 2014 in addition to the one in 2017 and I dug into the life cycle of the average star to get a sense of what undeath looks like in stars.
Below the cut are my sources, music credits, a vocab list, and the transcript of this episode. Suggest what you think I should research next by messaging me here, tweeting at me at @HDandtheVoid, or asking me to my face if you know me. Please subscribe on iTunes, rate it and maybe review it, and tell friends if you think they’d like to hear it! Also, welcome if you found me through PodCon!
(My thoughts on the next episode are the International Space Station, the transit of Venus, or astronaut training practices. The next episode will allegedly be up on New Year’s Day, January 1st. We’ll see about that.)
Chandrasekhar limit - the upper limit for the mass of an astronomical body that can support extreme density without imploding: about 1.4 times the mass of our Sun. Any white dwarf star that has less than that mass will stay a white dwarf forever; any star that exceeds the Chandrasekhar limit will end in a supernova.
dwarf nova - a close binary system of a red dwarf, a white dwarf, and an accretion disk around the white dwarf. They brighten by 2 to 6 magnitudes depending on the stability of the disk, which loses material to the white dwarf. Categorized as a cataclysmic variable.
neutron star - a type of star that has gone supernova, when the surviving core is 1.5 to 3 solar masses and contracts into a small, very dense, very fast-spinning star.
nova - a close binary system of a white dwarf and a secondary star that’s a little cooler than the Sun. The system brightens 7 to 16 magnitudes in 1 to 100 days, and then the star fades slowly to the initial brightness over a period of several years or decades. At maximum brightness, it’s similar to an A or F giant star. Recurrent novae are similar to this category of variable but have several outbursts during their recorded history. Categorized as a cataclysmic variable.
pulsar - a type of neutron star that spins very, very fast. Also a kind of variable star that emits light pulses usually between 0.0014 seconds and 8.5 seconds.
reflection telescope - reflects light rays off the concave surface of a parabolic mirror to get an image of a distant object. Higher contrast image, worse color quality.
spectroscopy - the study of light from an incandescent source (or, more recently, electromagnetic radiation and other radiative energy) that has its wavelength dispersed by a prism or other spectroscopic device that can disperse an object’s wavelength. The spectra of distant astronomical objects like the Sun, stars, or nebulae are patterns of absorption lines that correspond to elements that these objects are made up of.
supernova - a massive star that explodes with a magnitude increase of 20 or more. Supernovae have led us to realize that the expansion of the Universe is accelerating.
supernova progenitors - the kinds of stars and conditions that will result in certain types of supernovae.
white dwarf star - a star that has exhausted all of its nuclear fuel (i.e. no longer has hydrogen to convert into helium through nuclear fusion). It is the hot, dense core of a star. Unless it is acquiring/accreting matter from a nearby star, it will cool over time and become a dead star.
Chandrasekhar limit via PBS, Jan 2012
“The Chandrasekhar Limit is therefore not just as upper limit to the maximum mass of an ideal white dwarf, but also a threshold. A star surpassing this threshold no longer hoards its precious cargo of heavy elements. Instead, it delivers them to the universe at large in a supernova that marks its own death but makes it possible for living beings to exist.”
Type I and Type II supernovae via Space.com
Type Ia supernovae via Swinburne University of Technology
Type Ia Supernova Progenitors via Swinburne University of Technology
Zombie star via NASA, Aug 2014
Curtis McCully “I was very surprised to see anything at the location of the supernova. We expected the progenitor system would be too faint to see, like in previous searches for normal Type Ia supernova progenitors. It is exciting when nature surprises us.”
The abstract of the article McCully and his team wrote on Type 1ax supernovae via Nature Magazine, Aug 2014
Zombie star via CNN, Nov 2017
Arcavi: "My first thought was that this must be some nearby star in our galaxy, just varying its brightness. But when we got the first spectrum of it, we saw that it was in fact a supernova 500 million light-years away. My mind was blown. The fact that it got bright and dim five times was very unusual. We'd never seen a supernova do that before."
Arcavi: "This means that we still have a lot to learn about how massive stars evolve and how they explode."
Robert Evans via Sky and Telescope, Sept 2005
2017 zombie star articles I didn’t use because there were too many of them:
Air and Space Magazine, Nov 2017
The Atlantic, Nov 2017
BBC News, Nov 2017
BGR, Nov 2017
Carnegie Science, Nov 2017
Earth Sky, Nov 2017
Express UK, Nov 2017
The Guardian, Nov 2017
Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity
Filler Music: 'Toll Free’ by the Shook Twins off their album What We Do
Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught